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Abstract

Small canisters of Types 2014 and 6061 aluminum alloy were subjected to

short-term compatibility tests with nitrogen tetroxide and hydrazine to deter-

mine the effect of different cleaning procedures. Only minor differences were

noted. A flight-weight propellant tank of Type 2014 aluminum alloy was used
to store hydrazine for 46 months. At the end of that test, the tank was found to

be only slightly corroded. Firing tests showed the stored fuel delivered slightly

less performance; but it ignited and burned as smoothly with nitrogen tetroxide

as stock hydrazine burned with nitrogen tetroxide.
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Storage Tests of Nitrogen Tetroxide and

Hydrazine in Aluminum Containers

I. Introduction

The propellant storage tests described in this report

were started as part of the Vega program. Vega was the

first major effort undertaken by JPL for NASA. Formal-

ized early in 1959, the program was aimed at launching
several lunar and planetary spacecraft. A launch vehicle

was planned which was to use a modified Atlas for the

first stage; a second stage powered by a General Electric

rocket engine and, when necessary, a new third stage to

be developed by JPL.

The third stage incorporated a pressure-fed, bipropel-

lant propulsion system rated at 6,000 pounds thrust. The

system was built around an engine originally conceived

as a device for demonstrating practicality of the earth-

storable liquid propellant combination of nitrogen te-

troxide and hydrazine for use in regeneratively-cooled

thrust chambers. At JPL that propellant combination
was considered the "successor" to the earth-storable com-

bination of nitric acid and aniline. Sufficient experience

had been accumulated by the Laboratory to utilize these
propellants within the state of the art. The rocket indus-

try at large, however, hesitated to exploit the advantages

of these propellants because few companies had gone

beyond research-type testing; during early tests some

difficulties had been experienced, particularly with hy-

drazine. One goal of 6K propulsion system development

was to demonstrate the usefulness of these propellants in

a flight program.

As in almost any flight vehicle, propellant tankage

weight in the Vega third stage was critical. It was de-

cided the tanks should be made of a high-strength alu-

minum alloy (Type 2014-T6). That posed the problem

of assuring compatibility with propellants because, al-

though the alloy had been in use for some time, defini-

tive information on the degree of reaction with nitrogen

tetroxide and hydrazine under actual storage conditions
was not available.

The tests described in this report were initiated during

the Vega program to provide empirical data on com-

patibility of propellants with Type 2014 aluminum alloy.

Shortly after the work started, the Vega was cancelled;

nevertheless, testing continued because of the general

usefulness of the information to be obtained. Later, tests

of Type 6061 aluminum alloy were added during the

Mariner A program because of interest expressed in

the more conservative material choice. Final phases

of the full-sized tank storage test: hydrazine properties

JPL TECHNICAL REPORT 32-1039 1



analysis, and firing tests were supported as part of the

Advanced Liquid Propulsion Systems (ALPS) program.

The ALPS work, sponsored as an advanced development

by the Office of Advanced Research and Technology,

NASA, also aims at exploiting nitrogen tetroxide and

hydrazine as propellants (Ref. 1).

II. Propellant Characteristics

The propellant combination of nitrogen tetroxide and

hydrazine is easily handled, is storable at moderate tem-

peratures, and has good performance. An important
characteristic of the combination, which contributed to

system reliability through simplification, was its hyper-

golic ignition-spontaneous ignition occurs within a few

milliseconds of contact (Section VII).

Nitrogen tetroxide is an energetic oxidizer which exists

in equilibrium with nitrogen dioxide (N20_ _ NO_). It is
commercially available in large quantities at a purity of

99.5_ or greater. The liquid boils at 70*F but its vapor

pressure is low enough (48 psia at 120*F) to allow in-

definite storage in light-weight sealed containers at mod-

erate temperatures. The liquid is less than half as viscous

as water.

The liquid burns the skin on contact (protective cloth-

ing must be worn when splashes or spills are possible)

and the vapor is very toxic. Even concentrations which

are invisible may exceed the maximum allowable con-

centration (MAC) for 8-hour exposure. Self-contained air

supplies are required to provide positive protection from
breathing the vapor. Water is the universal antidote for

fires, spills, and skin contact. Usually, closed transfer

systems are used to minimize the hazard to personnel

and adjacent equipment.

Nitrogen tetroxide will not burn or thermally decom-

pose at an explosive rate. It is a vigorous oxidizer which

supports combustion. Although it is theoretically pos-

sible for nitrogen tetroxide to form shock sensitive com-

pounds, there were no known cases of explosions or fires
in test hardware due to reaction with contamination in

any programs carried out by JPL that used this oxidizer.

The degree of latent hazard seems substantially less than

with oxygen. Nevertheless, considerable care is exercised
to clean all surfaces in nitrogen tetroxide circuits. Clean-

ing processes for the several different system circuits

(oxidizer, fuel, and gas) are sometimes standardized for
the sake of convenience. Processes now used in flight

hardware are similar to those commonly used for oxygen

systems.

Dry nitrogen tetroxide is non-corrosive to many com-
mon metals; however, it is hygroscopic and reacts with

water to form nitric acid which is very corrosive. Also,

commercial nitrogen tetroxide often contains a small per-

centage of nitrosyl chloride (NOC1) which can attack

many metals, including some usually considered quite
corrosion resistant. Salts are frequently found on metal

surfaces after the liquid has been drained off and the sur-

face allowed to dry by evaporation over an extended

period. Very few plastic materials are known which can
resist attack by nitrogen tetroxide. The best elastomers

available for nitrogen tetroxide service are severely de-

graded after 2 to 4 weeks' exposure; the recent develop-

ment of nitroso terpolymer rubbers may provide the first

known elastomer to be truly resistant to N20,.

Hydrazine is a strong reducing agent and has physical

properties similar to water. It is commercially available

in large quantities on special order. Purity of samples

tested during the program averaged above 98.5_. Hy-
drazine is stored in drums for years and, when uncon-

taminated, it usually undergoes negligible changes in

composition over these periods.

The liquid produces an alkali burn upon contact with

skin, so protective clothing should be worn when spills

or splashes are possible. It is extremely poisonous if in-

gested and the vapor is highly toxic, but the low vapor

pressure of hydrazine makes accumulation of lethal con-

centrations unlikely wherever there is ventilation. Water

is the best treatment for fires, spills, and skin contact.

Usually, inert gas blankets and purges are used to dis-

place air from hydrazine storage and transfer systems to

minimize the possibility of reaction under conditions of

adiabatic compression.

Although hydrazine is not shock sensitive, thermody-

namic potential for explosive thermal decomposition has

been one of the major deterents to widespread use of

neat hydrazine as a fuel. Work at ]PL indicates that

reliable utilization of hydrazine is dependent upon:

(1) keeping it from contact with materials and types of
surfaces that are actively catalytic or readily reducible,

and (2) where heating is possible, eliminating zones of

local flow stagnation and providing sufficient flow ve-

locity for local conditions of bulk temperature and pres-

sure, ensuring that the local value of heat flux at the

upper limit of nucleate boiling safely exceeds local heat

flux. From the first statement comes the requirement to

avoid metallic oxides-the most prevalent cause of accel-

erated hydrazine decomposition. Cleaning and opera-

tional procedures must remove oxides and prohibit their

2 JPL TECHNICAL REPORT 32-I039



formation. Aluminum oxide seems to be an exception to

the rule and is considered compatible with hydrazine.

Hydrazine affects many metals and the degree of reac-

tion apparently is dependent upon the surface treatment.

For example, cleaning procedures used for the metal

canisters (discussed in Section IV) affected the amount

of copper leached from the aluminum alloy. Dilute hy-

drazine may be more reactive than the pure substance.

During the Vega program the fuel circuit in the heavy-

weight feed system (used for static test firings) was

flushed with distilled water and drained after many of

the tests. The bottom flange on the fuel tank and the

fuel flowmeter case were made of aluminum alloy. Pe-
riodic examination revealed pitting and formation of

aluminum hydroxide. The corrosion was attributed to

dilute hydrazine film remaining on the surface after the

tank was flushed and drained. Hydrazine also attacks

some plastics and elastomers but materials of that type,

which have excellent resistance, are available. Hydrazine

dissolves most surface coatings and adhesives.

From the foregoing general descriptions, it is apparent
that nitrogen tetroxide and hydrazine create certain stor-

age problems; these problems are not as severe as might

be supposed by the uninitiated, however, if judged rela-

tive to behavior of other common earth-storable propel-
lants. Dry nitrogen tetroxide is much more passive to

metals than red or white fuming nitric acid. Cleanliness

is far less critical with it than with hydrogen peroxide.

Hydrazine, while it attacks metals more vigorously, is

compatible with many more plastics and elastomers than

is unsymmetrical dimethylhydrazine.

III. Purpose of the Tests

At the time the storage test program was started, most

of the available compatibility information about these

propellants was obtained in chemistry laboratories by

immersing coupons, slabs or O-rings into beaker-sized

volumes of propellant _. Otherwise, such data were in the

nature of vague generalities based on test pit experience

where propellants had been kept for short periods in

ASME-type vessels of stainless steel. Almost all of the

long-term storage data were derived from experience
with the suppliers' shipping containers.

'A new method of.making compatibility tests using small materials
samples has recently been developed as part of the ALPS pro-
gram. The work will be reported in JPL Technical Reports.

It remained, therefore, to develop more definitive in-

formation on how well nitrogen tetroxide and hydrazine

could be stored for long periods in the particular light-

weight alloys of interest for flight tankage. Furthermore,

it was important to learn how compatible were the pro-

pellants and actual tankage structures that had weld

beads and joints. Compatibility, in this context, means

both the effect of propellants on tanks and vice versa.

Weakening of the tanks through corrosion was obviously

detrimental, as was decomposition of propellants in con-

tact with the tanks. Such decomposition would increase

pressure in the tanks and raise the temperature of the
tanks and propellants. It could also affect combustion

characteristics of the propellant combination.

Because complex and unpredictable interactions be-

tween tanks and propellants were expected, the test pro-

gram was slanted toward generating empirical data

under conditions that to some degree duplicated those a

flight tankage system might experience. The goal was to

actually measure pressure rise in containers filled with

propellants as a function of surface treatment given the
containers. Also, qualitative information was to be de-

veloped on the corrosion of containers by post-test exam-
inations. Late in the program, it was decided that some

indication of effect of long-term storage on combustion
characteristics of hydrazine should be obtained.

IV. Storage Tests of Hydrazine and Nitrogen

Tetroxide in Small Canisters of Type 2014

Aluminum Alloy

At the beginning of the program it was decided that

it was not feasible to do all testing with full-sized Vega
tanks because of the limited number of tanks available

and the magnitude of such an undertaking. Instead, a

plan was formulated that included a preliminary phase
devoted to screening the several alternate surface clean-

ing and treatment procedures to discover which method

resulted in least tank corrosion and propellant decompo-

sition. These screening tests were to be accomplished
with a number of small test canisters constructed of the

same material as the Vega tanks.

Two canisters, designated No. 1 and No. 2, were fab-

ricated of Type 2014-T6 aluminum alloy tubing and

plate for testing with hydrazine (N_H_). These cylindrical

canisters had an internal diameter of approximately

7.4 inches. Both were welded with a manually-operated

"IIeliarc" welder using a rod of 43S aluminum containing

JPL TECHNICAL REPORT 32.1039 3



5_ silicon. No attempt was made to keep an inert atmo-

sphere inside the canisters during welding. Canister No. 1

was cleaned by first rinsing with trichloroethylene, then

washing thoroughly with a commercial aviation-type de-

tergent, rinsing with distilled water, pickling with an

acid solution, rinsing again with distilled water, and

finally drying with nitrogen gas. Canister No. 2 was

cleaned with tricbloroethylene, rinsed with distilled wa-

ter, and dried with nitrogen gas. The volumes of the

canisters were measured to an accuracy of ±0.5% and
found to be 3600 milliliters for No. 1 and 3582 milliliters

for No. 2. The canisters were then hydrostatically proof-

tested to 25 psig with distilled water and dried again

with nitrogen gas.

Bourdon-type pressure gauges of Type 316 stainless

steel alloy and immersion-type thermometers of 18-8

stainless steel were installed to measure the pressure and

temperature of the contents of the canisters. Fittings on

the canisters were made of either Type 303 or 347 stain-

less steel. Teflon O-rings were used as seals and the pipe

threads were wrapped with teflon tape. An explosively-
actuated valve was attached to each canister so they

could be remotely vented in an emergency. The valves

were constructed of Type 17-4 PH stainless steel and

Type 2024-ST aluminum alloy. All of these appurte-

nances to the canisters were cleaned with trichloroethyl-

ene, rinsed with distilled water and dried with nitrogen

before assembly into the canisters. The entire assembly

was leak tested with nitrogen gas at 25 psig-no leaks
were found.

Canister No. 1 was filled with 3466 milliliters and

No. 2 was filled with 3448 milliliters of hydrazine. The

hydrazine was chosen from batches that analyzed 99.5 to

99.7_ N_H_ and less than 0.1% NH_ (ammonia). Both
canisters were stored in the shade for 1 month and then

in direct sunlight for 1 month at JPL's Edwards Test

Station; during this 2-month period the canisters were

kept in a horizontal position. Readings of the canister

pressure, liquid temperature and ambient temperature

were taken every hour for the first 8 hours, then three

times during each working day for 2 months.

During the 2-month test period, the recorded ambient

temperature ranged from + 29 to +94 °F; the higher tem-

peratures occurred during the first 2 weeks of the test,

the lower temperatures during the last 2 weeks. In can-

ister No. 1, liquid temperatures ranging from +23 to

+ 87"F were noted, while in canister No. 2 the tempera-

tures read were +22 to +91*F. Discrepancies between

extremes of recorded ambient and liquid temperatures

were probably due to instrumentation errors and actual

lags between changes in ambient and liquid tempera-
tures due to the slow rate of heat transfer between the

atmosphere and the liquid. Measured pressures ranged

from 0 to +7 psig in canister No. 1 and 0 to +63/_ psig
in canister No. 2.

The meaning of temperature-pressure data was very

difficult to assess because of inherent lack of accuracy in

the instruments used to gather data, the possibility of

leakage from containers, and lack of good data on solu-

bility of decomposition products of hydrazine in liquid

hydrazine. _ However, an attempt was made to gain a

feeling for the "relative" compatibility of the containers

in terms of the amount of undissolved gas accumulated

over the liquid. It was assumed that the decomposition

products obeyed the ideal gas law and that at a given

liquid temperature, the degree of solubility was a con-

stant, regardless of pressure. Then from the canister

volume, liquid volume, and the temperature, a calcula-

tion was made of the weight of gas over the liquid as a

function of test time. A plot was made of all the data

points for liquid temperatures between +60 and +65°F.
The results of these calculations showed an increase of

approximately 1.6 × 10 -_ pounds per day of decomposi-

tion products in both canisters. (Approximately 11613

square centimeters of interface existed between the
liquid and metal in canister No. 1 and 1150 square centi-

meters in canister No. 2.) It should be noted that because

of constantly changing liquid temperature, this rate of

decomposition is an integrated summation reduced to a

reference temperature range (60 to 65 °F), and not neces-

sarily the rate at the reference temperature. At comple-

tion of the test, all the liquid was decanted, ttydrazine

from canister No. I contained finely divided sediment.

The analysis was 99.3_ N_It,, 0.1% NH:,, less than

0.001_ non-volatile matter, and a residue which was

more than 50_ copper (the remainder being aluminum).

Hydrazine from canister No. 2 appeared to have gray,

fluffy matter in it. The analysis was the same as from

canister No. 1, except that the residue was 6_ copper

and 94_ aluminum. After sectioning, canister No. 1 ap-

peared to be fairly clean inside, while No. 2 was some-

what more discolored and corroded. Figure 1 shows the

internal appearance of the two canisters.

Two more canisters, labeled M and C, were fabricated

as before. Canister M was not cleaned, except for being

"The data of Thomas (Ref. 2) indicate an ammonia concentration
of approximately 0..3 mole % would be necessary to give rise to a
pressure increase (at + 100*F) dettx'table in the experiments de-
scribed in this report.
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Fig. 1. Interior surfaces of canisters No. 1 and No. 2

(Type 2014 aluminum alloy) after 2-month
storage of hydrazine

wiped with a rag soaked in acetone to remove oil and

grease prior to welding and wire brushing on the sur-

faces to be welded. Cleaning was avoided so that the

compatibility of the "mill surface", as received, could be

determined. The parts for canister C were cleaned by

sanding the entire inner surface to a 125-micro-inch fin-

ish, then degreasing and "chem milling" approximately

0.0005 inches from the stock, using a mild base solution.

The edges were not wire-brushed prior to welding. The

procedure was the same as proposed for cleaning Vega

propellant tank parts. The volumes of the canisters were
measured to an accuracy of 0.5% and found to be 5600
milliliters for canister M and 5725 milliliters for can-

ister C. Canisters were then hydrostatically proof-tested

to 100 psig with distilled water and dried with nitrogen

gas. The canisters were then fitted with the gauges and

valves, as were canisters No, 1 and No. 2 previously
described.

Canister M was filled with 5376 milliliters of hydra-

zine; canister C, with 5496 milliliters. A sample of hy-

drazine from the same drum analyzed as 98.3% N2H_
and 0.5_ aniline. The canisters were stored in shade for

1 month and then in direct sunlight for 1 month at
Edwards Test Station. As with canisters No. 1 and No. 2,

these canisters were kept in a horizontal position. Read-

ings of canister pressure, liquid temperature, and am-
bient temperature were taken three times each working

day.

Ambient temperatures recorded during the test period

varied from +43 to +108*F. Moderate temperatures

prevailed during the early part of the test, then extremes

of hot and cold occurred during the latter two-thirds of

the period. In canister M the records show liquid tem-
peratures ranged from +37 to +108"F, while the

temperatures in C varied from +35 to +107*F. Mea-

sured pressures in both canisters reached + 13 psig.

Plots of data, calculated in the same manner as for
canisters No. 1 and No. 2, showed increases in gas

weight for the first 30 days, then no further evolution

of gas. The rate was the same as for canisters No. 1 and

No. 2. At completion of the test, all the liquid was de-

canted. It appeared normal with no visible sediment.

Analysis of hydrazine from canister M was 99.2% N_H_,
0.5_ aniline, and less than 0.0001_ non-volatile matter.

Analysis of hydrazine from canister C gave the same

results, except the N_H, content was 99.0%. Little scale

was found in either canister but canister M appeared

more discolored. Figures 2 and 3 show these canisters

after sectioning.

It was concluded from the canister tests that rate of

hydrazine decomposition was relatively unaffected by

any of the cleaning procedures. The ability of the 2014

aluminum alloy to withstand hydrazine attack was some-

what dependent upon surface treatment.

Two canisters, designated No. 3 and No. 4, were fab-

ricated of 2014-T6 aluminum tubing and plate for testing

with nitrogen tetroxide. The fabrication technique was

the same as employed for hydrazine canisters No. 1 and

No. 2 previously described. Canisters were cleaned by

first rinsing them with trichloroethylene, then washing

thoroughly with a commercial aviation-type detergent,

rinsing with distilled water, and finally drying with ni-

trogen gas. In addition to being cleaned, canister No. 4

was "passivated" by keeping it full of nitrogen tetroxide
for 24 hours. The volumes of canisters were measured to

an accuracy of ±0.5_ and found to be 4240 milliliters
for No. 3 and 4297 milliliters for No. 4. Canisters were

then hydrostatically proof-tested with distilled water to

120 psig and then dried. They were fitted with gauges

and valves, as were canisters No. 1 and No. 2. Canister
No. 3 was filled with 4070 milliliters and No. 4 was filled

with 4125 milliliters of nitrogen tetroxide and were

placed on their sides in shade at Edwards Test Station.

Readings of canister pressure, liquid temperature and

ambient temperature were taken as for canisters No. 1
and No. 2.

No indication of reaction was observed on the instru-

ments. (A slight rise in pressure was noted as ambient

temperature warmed during each day, attributed to nor-

mal increase in vapor pressure of the nitrogen tetroxide.)

JPL TECHNICAL REPORT 32.1039 5



Fig. 2. Canister M (Type 2014 aluminum alloy)

after 2-month storage of hydrazine

Fig. 3. Canister C (Type 2014 aluminum alloy)

after 2-month storage of hydrazine
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Fig. 4. Canister No. 3 (Type 2014 aluminum alloy) after

2-month storage of nitrogen tetroxide

m

n
m

m
m

Fig. 5. Canister No. 4 (Type 2014 aluminum alloy) after
1-month storage of nitrogen tetroxide

At completion of the test, all the liquid was decanted. It

appeared normal with no visible sediment. Analysis
showed the composition of the nitrogen tetroxide to be

virtually unchanged; there was 0.1 to 0.2_, water, and

0.0001_ FezO3 which probably came from the shipping

container before the test started. The canisters were sec-

tioned for examination. A multitude of small pits were

found on the interior surfaces. These pits were between

0.0001 and 0.0002 inches deep. Canister No. 4 was some-

what more discolored than No. 3; the reason for that was

not discovered. Figures 4 and 5 show the internal ap-
pearance of the canisters after test. It was concluded

from these tests that 2014-T6 aluminum, cleaned ac-

cording to the procedure used, is suitable for storage of

nitrogen tetroxide and that the 24-hour "passivation" was

unnecessary.

V. Storage Tests of Hydrazine in Small Canisters

of Type 6061 Aluminum Alloy

Eight small canisters were fabricated of 6061-T6 alu-

minum tubing and plate. As before, a hand-operated

Heliarc welder and 43S aluminum alloy rod were used

without any inert atmosphere inside the container. Final

machining was done after heat treating the assembly to
the T6 condition. All the finished canisters had internal

dimensions of approximately 5.0 inches in diameter and

7.9 inches in length, giving an average internal volume

of 2540 milliliters. Canisters 1 and 5 were cleaned by

rinsing with trichloroethylene, drying, pickling with a

solution of nitric and hydrofluoric acid for 5 minutes,

rinsing with distilled water, and finally drying with ni-

trogen gas. Canisters 2 and 6 were cleaned by rinsing

with Furfasol M-17 solvent (manufacturer: John B.

Moore Corporation, Nutly, New Jersey), then passivating

with anhydrous hydrazine which was drained out after

approximately 24 hours. Canisters 3 and 7 were prepared

by a commercial firm which .had subiected the interior

surfaces to a "liquid honing" process. Interiors of can-

isters 4 and 8 were given a "chem milling" treatment by

a commercial company. All the canisters were hydro-

statically proof-tested to 400 psig with distilled water

and then dried with nitrogen gas.

Instrumentation similar to that used for the previous
tests (described in Section IV) was installed on each

canister. Instead of the explosively-actuated valves, how-
ever, every canister was fitted with a burst-disc assem-

bly for protection against excessive pressure build-up.
Each of the canisters was loaded with 2134 milliliters of

anhydrous hydrazine. All eight canisters were then

placed in a vertical orientation in shade at ]'PL's
Edwards Test Station facility. Figure 6 shows four of the

canisters in the storage shed. Readings of canister pres-

sure, liquid temperature, and ambient temperature were

taken twice each working day for 2 months. Recorded
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Fig.7. Type6061aluminumalloycanisterdegreased
andpickled,then used to store hydrozine 2 months

Fig. 6. Typical canister storage test installation

ambient temperatures ranged from +53 to + 112°F dur-

ing the test period, the higher temperatures occurring
toward the end of the test.

During test period, temperatures recorded for the

liquid in canister No. 1 varied from a low +37"F to

a high +97"F. Maximum pressure recorded during

that period was 1 psig. No trend of hydrazine decompo-

sition could be inferred from such meager data. When

the canister was cut open, its interior was found free of

scale and there was no noticeable discoloration or pit-
ting (Fig. 7).

The recorded temperatures for the liquid in canister

No. 5 ranged from +42°F to +98"F during the same

period, while the pressure was varying from 0 to 5 psig.

Since this canister received the same treatment as No. 1,

the substantial difference in pressure is noteworthy. No

specific explanation for the difference was discovered,

but the data show higher pressures from the start of the

test, which might infer a pressure leak in No. 1, but

No. 5 was leak-tight. Plots of points calculated from data

taken at liquid temperatures between +80 and +90*F

show an accumulation of 3.8 × 10 -6 pounds per day for

the first 30 days, then a drop in rate to 1.2 X 10 " pounds

per day. The liquid-to-metal interface was 806 square
centimeters.

Canister No. 2 registered pressures ranging from 0 to

61/_ psig, and the recorded liquid temperatures were all

between + 39"F and + 99 °F. The plots of data indicated

about the same gas evolution trend as for canister No. 5.

While the interior of this canister showed no scaling or

pitting, there were patches of dark discoloration; such

patches are not particularly visible in the photograph
(Fig. 8).

Liquid temperatures of from +45"F to + 102"F were

recorded for canister No. 6, but the pressure gauge al-

ways read zero psig. In that case, also, it seemed unlikely

that two canisters, treated exactly alike, would differ so

much in pressure build-up. The zero pressure reading,

regardless of temperature, made that data suspect and

raised doubts about leak-tightness of the assembly.

Recorded liquid temperatures were from +37"F to

+98*F in canister No. 3. The recorded pressures were

0 to 1 psig. A slight amount of dark discoloration was

observed when the canister was sectioned, but there

was no visible scaling or pitting (Fig. 9).
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Fig. 8. Type 6061 aluminum alloy canister which had

been flushed with trichloroethylene, passivated

24 hours with hydrazine, then used to

store hydrazine 2 months

Fig. 9. Type 6061 aluminum alloy canister subjected
to a "Chem Mill" treatment, then used to

store hydrazine for a period of months

Canister No. 7 instruments indicated a temperature

range of +44"F to +101*F and a pressure variation of

0 to 5 psig. That canister and No. 3 were given the same

processing so the discrepancy in pressure readings raised

doubts about leak-tightness of No. 3. Scatter in the data

Fig. 10. Type 6061 aluminum alloy canister subjected

to a "Liquid Hone" treatment, then used to

store hydrazine for a period of months

for No. 7, however, made evaluation of decomposition

rate impossible.

For canister No. 4, the recorded temperature extremes

were +300F and +90*F and the data show only zero

gauge pressure. Inside surfaces were very clean and free

of scale or discoloration; no pitting from corrosion was

visible but the surface was rough, as is typical of

chemically-milled surfaces (Fig. 10).

The other chem-milled canister, No. 8, also gave zero

pressure readings. Liquid temperatures of -I-38"F to
+ 95 °F were recorded.

Post-test analysis of hydrazine showed no measurable

change in basic composition. Samples from canisters 1

through 4 were 99.3 to 99.4% hydrazine and 0.5_ ani-

line. Non-volatile residue (as Fe.,O_) was about 0.001%

in canisters 1, 3, and 5, and 0.003_ in canister 2.

The exact degree of hydrazine decomposition was not

determined. Such a determination would involve pre-test

and post-test analysis for water, ammonia, nitrogen and

hydrogen. To do that would have required the hydrazine

to be transferred under pressure into the sampling ves-

sels so that the dissolved products of the decomposition

(ammonia, nitrogen, and hydrogen gases) would not
effervesce and be lost. The validity of conclusions drawn

from this more complete analysis would still be open to
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question because of the possibility that leakage occurred
during the test and allowed some of the gaseous prod-

ucts to escape.

In addition to the questions about the leak-tightness

of these assemblies, there was some doubt about the

accuracy of temperature data. Only small differences in

temperature would ordinarily be expected, since the

canisters were mounted side-by-side in two installations

(Fig. 6). The data show differences as great as 12°F

between readings taken at any one time. The thermome-

ters on canisters 1, 3, and 5 usually read within 2 degrees

of each other, while that on canister 2 averaged 2 de-

grees higher. Randomly higher readings were obtained

from canisters 6 and 7; these read as much as 12°F

greater than 1, 3, 5, and 2. Readings averaging 4*F lower

were gotten from canister 8, and the thermometer on

canister 4 usually read 8 to 12*F lower than 1, 3, and 5.

Despite the problems of interpreting data, the tests

did seem to indicate that Type 6061-T6 aluminum alloy

was not seriously affected. With the degreased-pickled

samples and the chem-milled samples, there was no ap-

preciable degree of discoloration.

VI. Storage Test of Hydrazine in a Flight-Weight

Tank of Type 2014 Aluminum Alloy

Upon completion of the screening tests, using small

canisters, the full-size Vega propellant tank was pre-

pared for a long-term storage test with anhydrous hydra-

zine. The tank was nearly spherical in shape except for

the very bottom, which had a truncated cone. Overall, it

was 62.66 inches high and 56.2 inches in diameter at the

"equator." The internal volume was approximately 55.5

cubic feet. It was designed for a working pressure of

250 psia and a burst pressure of 325 psia at +I20*F.

Minimum wall thickness was 0.036 inch. But in many

areas, substantially thicker sections were necessary, as in

the transition sections, near weld seams, and wherever

bending loads would exist-such as at the mounting lugs.

Two anti-slosh baffle rings were installed inside the

tank. Figure 11 shows the construction of the tank.

Lockheed Aircraft Company of Burbank, Calif,, fabri-

cated the tank of Type 2014 aluminum alloy. The main

sections were spun from flat sheet, and bosses at top and

bottom were machined from thick plate stock. Inert-gas-

shielded arc welding was used to make all seams. Except

10

for grinding some of the weld beads, none of the surfaces

received any special treatment (e.g., anodizing), but were
left in the "as machined" condition.

The tank was cleaned by first rinsing with triehloro-

ethylene, then thoroughly washed with a commercial

aviation-type detergent, rinsed with distilled water,

pickled with an acid solution, washed again with de-

tergent, rinsed with distilled water, and dried with

warm nitrogen gas. (Cleaning procedure described in

detail in Appendix.)

Upon receipt at JPL, the tank was proof-tested and

fitted with the necessary appurtenances for the test.

These included a bourdon-type pressure gauge and two

vent valves connected to the top port of the tank, a

standpipe running from one of four bottom ports up to

the middle of the tank (for securing propellant samples

from the center of the propellant bulk), a dial thermom-

eter inserted through another of the bottom ports, and

two drain valves, plus miscellaneous necessary fittings

attached to the bottom ports. All of these articles were

constructed of aluminum, stainless steel, and/or Teflon.

All seals were Teflon. Each of these parts was carefully

cleaned before installation.

The tank assembly was mounted in a special frame

and placed in direct sunlight at JPL's Edwards Test

Station (Fig. 12). On July 27, 1960, after having been

leak tested to 25 spig with nitrogen gas, it was filled with

approximately 2580 pounds of anhydrous hydrazine. The

ullage, about 14.5 cubic feet, was pressurized to 5 psig

with nitrogen gas.

Samples were taken from the six drums of hydrazine

used to fill the tank; the weighted average of the six

analyses (using a method estimated to be accurate with-

in ±0.59; hydrazine) showed these consisted of 98.1%

hydrazine, 0.7% aniline, and less than 0.0001% insoluble

matter by weight. Periodically, samples of hydrazine

were withdrawn from the center (using the standpipe)

and from the bottom of the tank. This was done approxi-

mately once every 2 weeks for the first year, once every

month during the following 6 months, then once each

6 months for the remainder of the test. These samples

were analyzed for hydrazine, aniline, and insolubles.

Neither water nor ammonia was checked; analysis for

ammonia would have been meaningless anyway, unless

very special precautions were taken to avoid loss of

ammonia during the process of drawing and transporting

samples.
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Fig. 11. Section view of Vega fuel tank used for long-term storage test of hydrazine
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Fig. 12. Vega fuel tank during long-term

storage test of hydrazine

The first samples, taken from the tank on August 8,

1960, contained a very small amount of black residue

analyzing high in aluminum, iron, and copper. Subse-

quent samples were clear with no noticeable solid mat-

ter. In some cases there was just enough metal content

to be detectable with the analytical procedures used. All

analyses made during the first 3 years indicated a con-

centration of 98.6 __+0.69_ hydrazine and 0.5 _0.1_4

aniline by weight; non-volatile solids never exceeded

0.002%. Tile last two analyses, taken in January and

May, 1964, showed 97.0 and 96.5,c/¢ hydrazine, respec-

tively; no explanation for this decline in hydrazine con-
centration after 31/_ ),ears is known for certain. Perhaps

slight variations in sample handling altered the amount
of dissolved ammonia retained in the samples.

The chronological history of tile hydrazine composi-

tion is somewhat obscured by lack of data on ammonia

and water content. It is felt, however, that a considerable

amount of dissolved ammonia (a decomposition product

of hydrazine) was present in the hydrazine, toward the

end of the test.

Taken at face value, the data do not reveal any mea-

surable build-up in vapor pressure over the liquid during

the 26 months data were gathered. That is to say, at any

given temperature, the tank pressure was the same (with-

in the apparent accuracy of instrumentation) at any time

during the test period. That tended to indicate the rate

of hydrazine decomposition was very slow and that a

sufficient volume of hydrazine was available in which

the decomposition products could be dissolved and leave

only a negligible amount of these products in the ullage.

Of course, the possibility of gas leaks cannot be com-

pletely ignored, but positive pressures of the order of

2 to 5 psig were indicated to exist continuously over pe-
riods of several months during each warm season.

On May 6, 1964, the hydrazine was drained from the

tank. Using methods accurate to ±0.5% hydrazine,

measurements were made of tile composition of samples

taken from the six drums, into which all but the first and

last quantities were drained. Three samples analyzed

96.2_ and three samples analyzed 96.4% hydrazine; the

average of 96.3% compared favorably with the final

analysis of 96.5% for the final sample taken from the tank

before draining. The seventh drum, containing a few

pounds of the "worst" hydrazine (i.e., the first and last

quantities), yielded a sample that was 95.6% hydrazine.

Another sample from tile seventh drum and a sample

of ordinary hydrazine from JPL's regular stock were ob-

tained later during a series of firing tests (described in

Section VII). These two samples were sent to an inde-

pendent laboratory _ for comparative analysis, measure-

ment of physical properties, and tests of ignition lag with

nitrogen tetroxide (N_Oa). The stored material was found

to be approximately 97.84c_ N2It,, 0.45_ aniline, 1.86%

water, and 0.01% insolubles. No explanation was avail-

able for the discrepancy between that analysis and the

several made on similar samples by JPL. The stock hy-

drazine was 98.629f N_II,, 0.23_4 aniline, 1.28% water,

and 0.01_ insolubles; that was believed to be very close

to the original composition of the stored hydrazine. The

measured density and viscosity of stored hydrazine were

both slightly lower than values used in calculations by

JPL for hydrazine/water mixtures of the measured com-

position. _ For stock hydrazine, the density value reported

was essentially the same as ]PL used, but viscosity was

about 3.5_5 lower than JPL's value. All differences noted

were, however, insignificantly small for practical pur-

poses (e.g., calibrating flow systems).

After being drained, the tank was purged with warm

nitrogen to dry it out. Several weeks later it was flushed

'Dynamic Science Corporation, Monrovia, California.

'Values used in JPL calculations based on very careful measure-
rnents of physical properties made by Analytical Chemistry Sec-
tion, JPL.
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with a small amount of water and cut open for inspec-

tion. Many areas on the internal surface appeared to be
discolored. In a random manner, the colors of the

splotches were almost white, yellow-gray, blue-gray, and

green-gray. In general, the dominant markings appeared
as if a semi-liquid material had oozed out of the tank

wall and drained downward toward the bottom of the

tank. There were also some diffused circular rings,

faintly resembling water level marks around a lake;

these were probably related zones of variations in the

metal surface, or a structural condition caused by
the fabrication process. Since the inside of the tank was

not seen until several weeks after having been drained,

it is not known for certain what changes in the surface

took place between the time it was drained and when

cut open. Figures 13 and 14, although lacking color defi-

nition, convey a good impression of the appearance of
lower and mid-section parts of the surface at the time

it was first inspected.

Samples for metallographic analysis were taken from

a number of areas. Some were selected as being typical

of the badly discolored or obviously pitted spots (sam-

ples 1 to 5), while others (samples 6, 7, and 8) were

chosen, for purposes of comparison, from adjacent but
"cleaner-looking" areas. The microstructures of these

eight samples, after having been metallographically pol-

ished and etched, revealed some evidence of possible

Fig. 13. Interior lower surface of Vega fuel tank after long-term hydrazine storage test and
locations where metallographic samples No. 3 and No. 4 were taken
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Fig.14. Interiormid-sectionsurfaceof Vegafueltankafterlong-termhydrazinestoragetestand
locationswheremetallographicsamplesNo.2andNo.7 weretaken

intergranular corrosion. However, in no case was the

depth of pits found to be greater than 0.002 inch

(Table 1). Figures 15 through 20 illustrate the most

severe damage found in each specimen; two examples of

exterior surface condition are shown for comparison.

The degree of corrosion seemed to vary considerably

from area to area; the severest attack was limited to

discrete spots, rather than covering extensive areas. Gen-

erally, discoloration was not indicative of the severity of

corrosion, but corrosion was more prevalent in discolored

areas than in the more normally colored areas. The cause

of the discoloration was not determined. Although the

exact corrosion mechanism was not established, the de-

tection of copper and alumint_m in the first few samples

Table 1. Depth of corrosion in Vega fuel tank specimens

Sample Maximum depth of corrosion, mils

I

3

4A

4B

5

6

7

8

negligible

less than 1

less than 1.7

less than 1.5

negligible

less than 0.5

less than 1

less than 0.5
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Fig.15.CorrosioninVegafueltankspecimenNo.4A,
magnification× 500

Fig. 17. Corrosion in Vega fuel tank specimen No. 6,
magnification × 500

Fig. 16. Corrosion in Vega fuel tank specimen No. 4B,

magnification × 500

of hydrazine taken from the tank might indicate the

attack was, at least partially, a chemical dissolution (as

contrasted with a possible alternate mechanism involv-

ing an electrochemical process). Lack of a further in-

crease in the copper and aluminum content would then

Fig. 18. Condition of outside surface of Vega fuel tank

specimen No. 9, magnification × 500

have meant that all the observed degradation had taken

place within the first few weeks of the exposure test.
That finding would be in concert with those of the can-

ister tests, where similar discoloration occurred within

short periods.
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Fig. 19. Corrosion in Vega fuel tank specimen No. 7,

magnification × 500

Fig. 20. Condition of outside surface of Vega fuel tank

specimen No. 7, magnification × 500

Each of the samples was also checked for hardness.

The hardness survey was made on a Leitz Miniload

tester, using the 100-gram Knoop indentor. Results are

given in Table 2, along with conversions to equivalent

Table 2. Hardness test results from Vega

fuel tank specimens

Knoop scale, Diamond pyramid" Rockwell B_

Sample 0.1 kg scale, 10 kg scale

I

2

3

4A

4B

5

6

7

8

2014-T4_

2014-T6b

144

106

161

169

162

159

154

147

154

124-148

172--200

"Converted from Knoop scale.

128

102

142

148

142

140

137

132

137

116-132

150--169

7T

57

77

79

77

76

75

73

75

65-73

80--86

t_Comparison data from: "Metals Handbook," American Society of Meta|s,

8th Edition, 1961.

10-kilogram diamond pyramid hardness numbers and

Rockwell B hardness numbers. The values range from

71 to 79 on the Rockwell B scale, except for sample No. 2

which was much softer (57 on Rockwell B). Sample

No. 2 was taken from the area where one of the anti-

slosh rings was welded to the tank, and it is possible

that the softness in that area was caused by overheating

during the welding process. The literature shows values

of Rockwell B hardness ranging from 65 to 73 for type

2014-T4 aluminum alloy, and 80 to 86 for the same alloy

in the T6 condition.

Four tensile test specimens were taken from locations

near the top end of the tank and subjected to yield

strength and ultimate tensile strength tests on a Baldwin-

Lima Hamilton Mark G press. Data f rorn _uch tests indi-

cated the mo teLiaI of the tank was slightly lessstrong

than the strength reported in the literature for new

2014-T6 aluminum alloy, but stronger than reported

for 2014-T4. Table 3 presents a summary of the datz

Based on the hardness and strength data, it was hy-

pothesized that the tank was not originally in the T6

condition, as had been supposed, but was solution-treated

and then allowed to age-harden at room temperature to

the T4 condition. From results of the metallographic

examination, it was concluded that corrosion was mini-

mal and not detrimental to the strength of the tank.
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Table 3. Tensile test results from Vega

fuel tank specimens •

Sample

Ultimate

0.2% yield tensile

strength, psi strength, psi

A 56,4OO

B 59,200

C 58,300

D 58,300

64,100

65,800

64,600

65,000

Ultimate

elongation,

%

11

11

11

11

Young's

modulus,

psi

10,600,000

11,100,000

11,100,000

11,100,000

_Tests were made on samples of 0.036-square-lnch cross-section at -_-750F.

VII. Firing Tests of Stored Hydrazine

After the long-term storage test of the Vega fuel tank

was completed, the hydrazine was drained into seven

carefully cleaned hydrazine storage drums. The initial

and final few pounds of liquid to flow out of the tank

were combined in one drum. That sample-assumed to

be the hydrazine which contained the most foreign ma-
terial-and a sample of stock hydrazine were then sub-

jected to several tests to compare their ignition and

combustion characteristics. (The chemical compositions

of these two samples of hydrazine were given in Sec-
tion V.)

Five ignition lag tests (using apparatus described in

Ref. 3) were performed with stock hydrazine and five

with the stored hydrazine. The lags measured in four

tests with the stock hydrazine were 0.82 ±0.08 millisec-

onds, which was approximately ¼ the lag previously

measured for nearly pure hydrazine. The other test gave

a value of 1.35 milliseconds. Lags with the stored hydra-
zinc were 1.33 __+0.18 milliseconds in four of the five

tests; the remaining test showed a lag of 1.85 millisec-

onds. The data in Ref. 3 show that the addition of 1%

water tends to reduce the lag; no data were obtained at

higher water concentrations, so a direct correlation with

lags reported here (for 1.28 and 1.86% water, respec-
tively) was not possible.

In order to detect differences in performance and

combustion smoothness between the stored and regular

stock hydrazine when burned with N.,O,, a series of six

rocket engine firing tests was made using the JPL

MOD IV 100-pound thrust injector and a heavy, un-

cooled thrust chamber of 42 inches L*. That injector
was chosen for the tests because of its demonstrated re-

producibility, from firing to firing; some data on this

injector are given in Ref. 4. Figure 21 shows a cross-

section view of the test engine assembly. The firing tests
were made at JPL's Edwards Test Station with the en-

gine installed (Fig. 22). To maximize the validity of the

comparison, no changes in hardware were made during
the series of six firings.

Thrust was measured by solid-state, crystal-type

(Schaevitz-Bytrex Corporation, Waltham, Massachusetts)

electronic load cells. Chamber pressure was measured by

Test

No.
Fuel

1 stock

2 stock

3 stock

4 stored

5 stored

6 stored

Table 4. Summary of firing test data

Average

effective

(plenum)

chamber

pressure,

Pc (psia)

Average

mixture

ratio, •

(O/F)

147 1.17

148 1.17

149 1.17

145 1.17

148 1.18

148 1.18

Average

oxidizer

temp.

To,

°F

Average

fuel

temp.

Tr,

° F

88 90

88 87

87 87

77 78

77 77

76 77

Characteristic velocity, c*, ft/sec

at I sec at 2 sec at 3 sec at 4 sec

5514 5512 5502 5502

5505 5505 5484 5494

5502 5541 5484 5498

5413 5427 5392 5410

5429 5433 5408 5436

5432 5446 5408 5433

Specific impulse, L, Ibr-sec/Ib.

at lsec at2 sec at 3 sec at4 sec

N.C. _ 216 216 216

N.C." 214 214 214

N.C. = 213 211 211

209 209 209 211

205 210 207 209

208 209 208 209

aNot calculated because of thrust record inadequacies (undamped oscillations in thrust mount).

Note: All c* calculations based on "cold" throat area. Four digits are shown for data consistency reasons only, not to imply four-place accuracy of the data.
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Fig. 21. Design of uncooled test rocket engine used to make comparison firings with stored and stock hydrazine fuel

Taber and flush-mounted Photocon pressure transducers.

Fischer-Porter turbine-type flow meters were used to

gauge the fuel and oxidizer flow rates. Before and after

each test, the diameter of nozzle throat of the engine
was measured with an internal micrometer at several

places and the average was used to calculate the throat
area.

comparison. Then, three tests were made with the stored

hydrazine. The average characteristic velocity, c*, deliv-

ered with the stock propellant was 5500 ft/sec and the

specific impulse, I_, was 214 lbt-sec/lb,,. A c* of ap-

proximately 5420 ft/sec and an I, of 208 lbt-sec/lb,_

were obtained with the stored hydrazine. Table 4 is a

summary of the test data.

Each test was approximately 41._ seconds in duration,

at a nominal chamber pressure of 148 psia and a nomi-
nal mixture ratio of 1.17. The first three tests were made

with the stock hydrazine to establish a "standard" for

VIII. Summary and Conclusions

Ignition and steady-state operation appeared to be

equally smooth with both stored and stock hydrazine.
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Fig. 22. Uncoo|ed rocket engine on test stand at JPL's Edwards Test Station

As usual, the injector provided very smooth combustion;

maximum peak-to-peak chamber pressure variations

(random in form) were ___2 psi, as measured by a flush-

mounted Photocon pressure transducer located near the

entrance to the converging section of the nozzle.

The difference in performance, as measured by char-

acteristic velocity c* or specific impulse Is, was greater
than anticipated based on the differences in chemical

composition alone (presuming analytical results are rep-

resentative of fuel as burned). That difference was not

fully explained. Both theoretical shifting and theoretical

frozen equilibri'dm performances were computed for

various fuel mixtures and test conditions, using a JPL

version of a performance program obtained from NASA's

Lewis Research Center. The program compared test

results with theoretical loss in performance to be ex-

pected with increasing amounts of water and ammonia

in the fuel; the changes in theoretical shifting equilib-
rium c* with added ammonia and water are shown as

plots in Figs. 23 and 24. The plots show that water

added to pure hydrazine causes a drop of 15 ft/sec in c*

for each percent (by weight) of water in the resulting

solution. Based on that figure, the difference in mea-
sured water concentrations would cause the stored fuel

to deliver 9 ft/sec less c* than stock fuel. Dissolving
ammonia into the fuel has a lesser effect, since ammonia

is a good fuel itself; each percent (by weight) of am-

monia in the chosen base fuel (hydrazine with 1_ water

and _/._% aniline) lowers the c* by only about 3 ft/sec.
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burned with N_O4 at r = 1.2

Obviously, the unaccounted for difference of 70 ft/sec

could be explained on the basis of dissolved ammonia

(evolved from decomposition of the hydrazine during

storage) but the amount necessary would be improbably

high.

Still, other possibilities did exist-such as the effect of

dissolved nitrogen gas (the other decomposition product

of hydrazine); this explanation would also be unlikely,

since the change in the energy release caused by inert

gas is negligible, unless very great amounts are involved.

More likely than affecting the true available energy per

unit weight, dissolved gases (either ammonia or nffro-

gen) would cause effervescence in the fuel in lower pres-

sure sections of the flow system. Thus, errors in flow

measurement (due to unpredictable density) and disin-

tegration of the liquid jets issuing from injector orifices

would occur. The latter problem should have been mini-

mized in the test injector because of the very short free-

stream lengths; the former should have been minimized

due to the very high drop across the injector orifices that

resulted in high feed pressures in the upstream circuit
where the flows were measured. Nevertheless, one or

both of these two possible causes were judged to be

the most probable reason for performance differences
measured.

Some of the apparent performance difference may
have been due to scatter, or errors in the measurements

or data reduction, but this was not likely the entire

cause, since the data displayed good consistency. For

these tests, the maximum deviation in c*, measured at

any given time from start (i.e., at like throat temperature

conditions), was only __+18 ft/see. If one point was re-

jected, the data would be consistent within ±10 ft/see.

Specific impulse figures were consistent within 4-3 sec-

onds. Flow rates were calculated based on counting

individual cycles (to the nearest b./., cycle) on the oseiUo-

graph traces. Pressure data were very carefully read

from both oscillograph and strip chart records; all cham-

ber pressure readings from the oscillograph agreed with-

in 0.5 psi with data taken independently from strip chart

records. While test-to-test consistency was an indication

rather than a proof of accuracy, it was judged that

errors arising from data measurement (excepting flow

rates, for the reason stated above) and data reduction
were minimal.

The conclusion reached at this writing is that the most

degraded hydrazine taken from the storage test had

properties which were slightly different from the stock

propellant, but still suitable for firing, provided the pos-

sibility of a slight lowering of performance would not be

detrimental. No seriously adverse effects were observed.
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Appendix

Table A-1. Cleaning specification

Solution Purpose Formula Temp, *F Time, rain Control

a. Cleaning Liquid detergent 1/2-I oz per 180 As required 50 ppm of particulate matter with

gallon maximum size of 10 microns:

pH 6.5-7.5

b. Distilled water rinse 120 As required pH 6.5-7.5

c. Pickling (aluminum) Chromic acid, 80 Ibs; Room As required 15 grams aluminum per liter

phosphoric acid, 20 gall solution

nitric acid, 15 gal (per 100

gal solution)

d. Distilled water rinse 120 As required pH 6.5-7.5

e. Passivating (aluminum) Chromic acid 11% Room 5-10 10 grams aluminum per liter of

solution

f. Distilled water rinse As required pH 6.5-7.5

Passivat;ng (hyd razine

service)

Hydrazine 10-25% by volume

with distilled water

g.

h. Neutral;zing Turco No. 4215, 2 oz per Room

gallon of water

120

Room 24 hours none (solution not reusable)

5 pH greater than 7.5
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